

MIGLIORAMENTO GENETICO E BIOTECNOLOGIE APPLICATE ALLA PATATA: RECENTI PROGRESSI E SFIDE FUTURE

Riccardo Aversano

Università degli Studi di Napoli Federico II Dipartimento di Agraria

THE POTATO FEEDS AND NOURISHES

one in seven people globally and supports livelihoods for millions

people eat potato

other crops scarce

-often where/when

CROP CYCLE

MILLION TONS

produced annually

10s of million of small-scale farmers and businesses

in Africa, Asia and Latin America depend on potato for cash incomes and wellbeing

MEDIUM-SIZED POTATO BOILED,

provides half adult daily requirement of: Vitamin C / Iron / Potassium

MOST IMPORTANT food crop globally after rice and wheat

https://cipotato.org/research/potato-agri-food-systems-program/

POTATO BREEDING OBJECTIVES

YIELD Tuber number, size, bulking rate, drought resistance, storability

CONFORMITY Tuber shape, regularity and uniformity

GROWTH DEFECTS Gemmation, hollow heart, growth cracks

QUALITY Browning, blackening, sloughing, texture, dry matter and sugars content, dormancy

MECHANICAL DAMAGE Shatter cracks, scuffing, bruising

EYE APPEAL Skin and flesh colour

RESISTANCE Late blight, Viruses (PVX, PVY, PLRV), Cyst nematodes, Common Scab, Wart, Skinspot, Powdery Scab, Soft and Dry Rot

POTATOES

output of the whole of Poland, and means the EU can export potatoes instead of importing them.

Research source: http://bit.do/plantetp-HFFAResearch More info: www.plantetp.org

Thanks to plant breeding over the past 15 years, farmers in the EU have grown an extra 10 million tons of potatoes every year.

That's more than the annual potato

OUTLINE

OUTLINE

THE NATIONAL POTATO BREEDING PROJECT

- Università Federico II, Portici
- Università Aldo Moro, Bari
- CNR-IGV, Portici
- CNR-ISAFOM, Catania
- CNR-IPP, Bari
- ISCI, Bologna e Salerno
- ISSDP, Firenze
- ENEA, Roma
- ISPAVE, Roma
- Cisa Mario Neri, Imola
- CRPV, Cesena
- Italpatate
- UNAPA

THE NATIONAL POTATO BREEDING PROJECT

THE VARIETIES RELEASED

PUKARA	
Sigla del clone:	
Costitutore:	ITALPATATE - INIA (Cile)
Incrocio:	Cleopatra x Yagana
Aree di coltivazione:	tutte le zone italiane,
Constant and the first	interessate alle produzioni
	di patata a buccia rossa
Epoca di coltivazione:	semine primaverili
Utilizzo:	consumo fresco, frigostoccaggio
Ciclo di maturazione:	medio-tardivo
Forma del tubero:	tonda-ovale
Colore della buccia:	rosso chiaro
Colore della polpa:	giallo
Sostanza secca:	17-18%
Tipologia culinaria:	В
Resistenze e/o tolleranze:	PLRV

ELMAS	
Sigla del clone:	ISCI 67
Costitutore:	Istituto Sperimentale per le Colture
	Industriali, Bologna
ncrocio:	Liseta x (Concorde x Wn 106-81)
Aree di coltivazione:	Sicilia, Puglia, Sardegna
poca di coltivazione:	extrastagionale (primaticcia e bisestile)
Jtilizzo:	novella, consumo fresco
Ciclo di maturazione:	precoce
orma del tubero:	allungata-ovale
Colore della buccia:	giallo chiaro (elevata lavabilità)
Colore della polpa:	giallo
ostanza secca:	17-18%
ipologia culinaria:	BA

SILA	
Sigla del clone:	CS 8617
Costitutore:	Dipartimento di Scienze del Suolo, della
	Planta e dell'Ambiente, Università degli
	Studi di Napoli "Federico II", Portici (NA)
	- ARSAA Calabria
ncrocio:	DTO 14 x W 879
Aree di coltivazione:	Sicilia, Puglia, Sardegna, Campania
poca di coltivazione:	normale (semine primaverili)
Jtilizzo:	consumo fresco, frigostoccaggio,
	industria (cubettato, prefritti)
Ciclo di maturazione:	medio
orma del tubero:	tonda-ovale
Colore della buccia:	giallo
Colore della polpa:	giallo intenso
Sostanza secca media:	21-22%
Tipologia culinaria:	BC
Resistenze e/o tolleranze:	resistente a nematodi cisticoli
	(Globodera rostochiensis patotipo HUZ)
	e galligeni (Meloidogyne javanica)

IGEA	
Sigla del clone:	ISCI B 26
Costitutore:	Istituto Sperimentale per le Colture Industriali, Bologna
Incrocio:	Turbo x (Wn 233-69 x Monalisa)
Aree di coltivazione:	tutte le zone italiane, interessate alle produzioni di patata biologica
Epoca di coltivazione:	semine anticipate in Sicilia (novembre) altrove semine primaverili
Utilizzo:	consumo fresco e frigostoccaggio
Ciclo di maturazione:	medio-tardivo
Forma del tubero:	ovale
Colore della buccia:	giallo chiaro (buona lavabilità)
Colore della polpa:	giallo chiaro
Sostanza secca:	Ĩ8-19%
Tipologia culinaria:	B
Resistenze e/o tolleranze:	altamente tollerante alla peronospora

SIBARI	
Sigla del clone:	CS 8621
Costitutore:	Dipartimento di Scienze del Suolo, della Pianta e dell'Ambiente, Università degl Studi di Napoli "Federico II", Portici (NA - ABSSA Calabria
Incrocio:	Vivax x Rosalie
Aree di coltivazione:	tutte le aree italiane
Epoca di coltivazione:	normale (semine primaverili)
Utilizzo:	consumo fresco, frigostoccaggio, industria (cubettato, prefritti)
Ciclo di maturazione:	medio
Forma del tubero:	ovale-allungata
Colore della buccia:	giallo
Colore della polpa:	giallo intenso
Sostanza secca media:	21-22%
Tipologia culinaria:	BC
Resistenze e/o tolleranze:	resistente a nematodi cisticoli (Globodera rostochiensis patotipo RO2)

ISCI 4052
Istituto Sperimentale per le Colture Industriali, Bologna
(Agata x Jaerla) x (Cilena x Wn 106-81)
Sicilia, Puglia, Sardegna, Campania
extrastagionale (primaticcia e bisestile)
novella, consumo fresco, esportazione (polpa soda)
medio-precoce
tondo-ovale
giallo chiaro (buona lavabilità)
giallo
17-18%
AB

DAYTONA	
Siala del clone:	MN290
Costitutore:	Cisa Mario Neri, Imola (BO)
Incrocio:	Spunta x Colmo
Aree di coltivazione	Nord e Centro Italia
Enoca di coltivazione:	normale (ciclo primaverile-estiva)
Litilizzo:	patata comune
Ciclo di maturazione:	da medio a medio-tardivo
Forma del tubero:	tonda-ovale
Colore della huccia	giallo chiaro (discreta lavabilità)
Colore della nolna:	bianco
Sostanza secca	23%
Tipologia culinaria:	C
npologia camana.	

ZAGARA	
Sigla del clone:	MN 326
Costitutore:	Cisa Mario Neri, Imola (BO)
Incrocio:	Timate x MN 1290 E
Aree di coltivazione:	Sud Italia
Epoca di coltivazione:	semine in agosto
Utilizzo:	novella
Ciclo di maturazione:	precoce
Forma del tubero:	ovale
Colore della buccia:	giallo brillante (ottima lavabilità)
Colore della polpa:	giallo
Sostanza secca:	17%
Tipologia culinaria:	AB

OUTLINE

GERMPLASM RESOURCES

- 104 potato species
 - 100 "wild"
 - 4 cultivated
- Wide geographic range
- Most are 2n=2x=24
- Cultivated potato = 4x
- Hybridization
 - Haploids
 - Chromosome doubling
 - 2n gametes
 - Somatic hybridization

Potato wild species ploidy

SPECIES UTILIZATION IN BREEDING

- *S. demissum*: LB, PLRV
- S. acaule: Viruses, nematode, frost
- S. chacoense: Viruses, insects
- S. spegazzinii: Nematodes
- *S. stoloniferum*: PVY and PVA
- S. vernei: nematodes, high starch

- Additional 9 species: in a few varieti
- Primitive cultivated: adg, stn, phu 9

POTATO GENETIC RESOURCES

Table 1. Results (mean ± standard error) from screening tests for resistance to *Ralstonia solanacearum*, PVY^{NTN}, low temperatures in non-acclimated (NACC) and acclimated (ACC) conditions of the 21 genotypes belonging to the 12 *Solanum* species^a

Ge (ac	notype code cession)	Species	R. solanacearum (WD)	PVY ^{NTN} (OD ₄₀₅)	NACC (°C)	ACC (°C)
Ac	I1B (PI210029)	S. acaule	4.0 ± 0	0.140 ± 0.060	3.6	NA
Ac	11C (PI210029)	S. acaule	4.0 ± 0	0.252 ± 0.103	4.0	4.3
Blb	o1C (PI275190)	S. bulbocastanum	3.6 ± 1.1	0.016 ± 0.00	2.3	3.0
Blb	o2C (PI275188)	S. bulbocastanum	0.0 ± 0	0.531 ± 0.086	2.0	2.5
/ PT2	29 (PI243510)	S. bulbocastanum	0.1 ± 0.3	0.116 ± 0.216	1.7	NA
Ca	n1B (PI365321)	S. canasense	4.0 ± 0	0.123 ± 0.152	2.0	2.4
Ср	h2A (PI347759)	S. cardiophyllum	4.0 ± 0	0.153 ± 0.122	1.8	2.2
Ср	h1C (Pl283062)	S. cardiophyllum	3.7 ± 0.5	0.014 ± 0.003	1.6	3.0
\ Ch	c1A (PI133124)	S. chacoense	1.1 ± 1.8	0.022 ± 0.009	1.9	3.3
\ Ch	c1B (275141)	S. chacoense	3.6 ± 1.1	0.144 ± 0.093	2.1	3.4
Cm	nm1T (PI243503)	S. commersonii	0.0	0.125 ± 0.063	6.4	8.9
Cm	nm6-6 (PI590886)	S. commersonii	4.0 ± 0	0.305 ± 0.136	2.8	6.7
Etb	3 (PI558054)	S. etuberosum	2.0 ± 0	0.016 ± 0.00	3.0	5.0
Fer	1B (PI275165)	S. fendleri	4.0 ± 0	0.571 ± 0.123	1.8	2.4
Fer	12B (PI458417)	S. fendleri	4.0 ± 0	0.365 ± 0.173	1.7	3.3
M	t1A (8MLT-M1)	S. multidissectum	4.0 ± 0	0.234 ± 0.088	2.7	4.4
IVF	P35 (PI584995)	S. phureja	0.0	0.013 ± 0.001	2.6	3.2
i IVF	P101 (PI484993)	S. phureja	NA	0.053 ± 0.030	1.9	2.7
Sto	1A (PI275248)	S. stoloniferum	4.0 ± 0	0.152 ± 0.124	2.2	2.4
Sto	1C (PI275248)	S. stoloniferum	4.0 ± 0	0.150 ± 0.052	1.8	3.4
Tar	2B (PI414148)	S. tarijense	4.0 ± 0	0.142 ± 0.065	1.1	2.2
Blo	ondy	S. tuberosum	4.0 ± 0	0.193 ± 0.073	2.3	3.1
	· ·					

THE INTROGRESSION BREEDING

Prof. Luigi Monti and Prof. Luigi Frusciante, 1980, Portici

Emeritus Campbell-Bascom Professor Stanley J. Peloquin (1921 – 2008)

2n GAMETES

Conicella et al., 2003

2n GAMETES

BREEDING AT DIPLOID LEVEL

Carputo et al. 2003

BREEDING VIA PLOIDY MANIPULATION

BREEDING AT POLYPLOID LEVEL

Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12013–12017, October 1997 Genetics

Endosperm balance number manipulation for direct *in vivo* germplasm introgression to potato from a sexually isolated relative (*Solanum commersonii* Dun.)

(2n gametes/randomly amplified polymorphic DNA)

Domenico Carputo^{*†}, Amalia Barone[‡], Teodoro Cardi[‡], Angela Sebastiano^{*}, Luigi Frusciante^{*}, and Stanley J. Peloquin[§]

*Department of Agronomy and Plant Genetics, University of Naples, 80055 Portici, Italy; ‡Consiglio Nazionale delle Ricerche, Research Institute for Vegetable and Ornamental Plant Breeding, 80055 Portici, Italy; and [§]Department of Horticulture, University of Wisconsin, Madison, WI 53706

Contributed by Stanley J. Peloquin, August 25, 1997

ABSTRACT Diploid (2n = 2x = 24) Solanum species with endosperm balance number (EBN) = 1 are sexually isolated from diploid 2EBN species and both tetraploid (2n = 4x = 48,4EBN) and haploid (2n = 2x = 24, 2EBN) S. tuberosum Group Tuberosum. To sexually overcome these crossing barriers in the diploid species S. commersonii (1EBN), the manipulation of the EBN was accomplished by scaling up and down ploidy tively, Tbr-4x can be crossed with hybrids between wild species and Tbr haploids. This second approach is preferable to reduce the number of wild genomes present in the tetraploid progeny. However, crosses between certain 24-chromosome species and Tbr repeatedly fail due to strong sexual isolating mechanisms. The most common underlying barrier to interspecific hybridization in *Solanum* spp. is the failure of endosperm develop-

Species	NAC (°C)*	AC (-°C)**
S. commersonii	- 6.4	- 10.2
S. tuberosum	- 2.3	- 3.1

* NAC: non-acclimated

**AC: acclimated

Plant Breeding 119, 127—130 (2000) © 2000 Blackwell Wissenschafts-Verlag, Berlin ISSN 0179-9541

Tolerance to low temperatures and tuber soft rot in hybrids between *Solanum* commersonii and *Solanum tuberosum* obtained through manipulation of ploid endosperm balance number (EBN)

D. CARPUTO¹, T. CARDI², J. P. PALTA³, P. SIRIANNI¹, S. VEGA³ and L. FRUSCIANTE¹

Secondary Metabolite Profile in Induced Tetraploids of Wild Solanum commersonii DUN.

by Immacolata Caruso^a)¹), Laura Lepore^b)ⁱ), Nunziatina De Tommasi^b), Fabrizio Dal Piaz^b), Luigi Frusciante^a), Riccardo Aversano^a), Raffaele Garramone^a), and Domenico Carputo^{*a})

 ^a) Department of Soil, Plant, Environmental, and Animal Production Sciences (DISSPAPA), University of Naples Federico II, Via Università 100, I-80055 Portici (Na) (phone: +39-081-2539225; fax: +39-081-2539481; e-mail: carputo@unina.it)
^b) Department of Pharmaceutical Sciences, University of Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA)

Euphytica DOI 10.1007/s10681-008-9673-x

Am, J. Pot Res (2009) 86:196-202

DOI 10.1007/s12230-009-9072-4

Amer J of Potato Res (2002) 79:345-352

of autotetraploids in wild potato species Riccardo Aversano · Maria-Teresa Scarano · Giovanna Aronne ·

Genotype-specific changes associated to early synthesis

Riccardo Aversano · Maria-Teresa Scarano · Giovanna Aronne · Immacolata Caruso · Vincenzo D'Amelia · Veronica De Micco · Carlo Fasano · Pasquale Termolino · Domenico Carputo

Tuber Quality and Soft Rot Resistance of Hybrids between *Solanum tuberosum* and the Incongruent Wild Relative *S. commersonii*

nenico Carputo", Luigi Frusciante¹, Luigi Monti², Mario Parisi¹, and Amalia Barone¹

Breeding potential of *Solanum tuberosum–S. commersonii* pentaploid hybrids: fertility studies and tuber evaluation

I. Caruso · L. Castaldi · G. Caruso · L. Frusciante · D. Carputo

Theor Appl Genet (200 DOI 10.1007/s00122-005-1550-5

DOI 10.1007/s10681-014-1338-3

J. Agric. Food Chem. 2002, 50, 1553-1561 1553

Glycoalkaloid Content and Chemical Composition of Potatoes Improved with Nonconventional Breeding Approaches

Fabrizio Esposito,[†] Vincenzo Fogliano,[†] Teodoro Cardi,[‡] Domenico Carputo,[§] and Edgardo Filippone*.[§]

Resistance to Ralstonia solanacearum of Sexual H Between Solanum commersonii and S. tuberosum

Domenico Carputo · Riccardo Aversano · Amalia Barone · Antonio Di Matteo · Massimo Iorizzo · Loredana Sigillo · Astolfo Zoina · Luigi Frusciante D. Carputo · A. Terra · A. Barone · F. Esposito · V. Fogliano · L. Monti · L. Frusciante

Glycoalkaloids and acclimation capacity of hybrids between *Solanum tuberosum* and the incongruent hardy species *Solanum commersonii*

THE SOMATIC FUSION

Solanum commersonii (+) S. tuberosum haploids

Theor Appl Genet (1993) 87:193-200

Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants

T. Cardi^{1*}, F. D'Ambrosio², D. Consoli¹, K. J. Puite³, K. S. Ramulu³

Research Centre for Vegetable Breeding – CNR, via Università 133, 80055 Portici, Italy
Department of Agronomic Sciences and Plant Genetics, University of Naples, via Università 100, 80055 Portici, Italy
Centre for Plant Breeding and Reproduction Research CPRO, Postbox 16, 6700 AA Wageningen, The Netherlands

THE SOMATIC FUSION

OUTLINE

Received: 16 February 2003 / Accepted: 12 May 2003 / Published online: 3 September 2 © Springer-Verlag 2003

GENOMES REVEALED

The potato genome consortium 2011

Aversano et al. 2016

IDENTIFICATION OF GENES INVOLVED IN TUBERIZATION

Stage	Morphological and Weight Descriptions of Tube	rization Stages

- I Hooked stolons with no swelling below the apical hook
- II Slight swelling below the apex begins to open apical hook
- **III** Further swelling in terminal 5 mm of stolon forces hook to open completely; developing tuber is less than twice the diameter of the stolon
- **IV** Longitudinal and radial expansion progress; developing tuber is approximately twice the diameter of the stolon.
- V 0.6- to 1.5-g tuber
- VI 1.5- to 2.5-g tuber
- **VII** 2.5- to 5.0-g tuber

VIII 5- to 10-g tuber

FIGURE 2 | Regulatory mechanism underlying tuber formation in potato. Right, components of the genetic pathway controlling tuberization. The tuberigen StSP6 is indirectly activated by StCDF1 and repressed by StCOL1 through StSP5G.

POTATO TUBERIZATION IS SUPPRESED AT HIGH T.

POTATO: A RICH SOURCE OF ANTHOCYANIN MOLECULES

THE ANTOCHYANIN ACTIVATION COMPLEX GENES IN POTATO

D'Amelia et al., Plant Journal 2014

THE ANTOCHYANIN ACTIVATION COMPLEX GENES IN POTATO

BLUE CELLS STOP TO PRODUCE ANTHOCYANINS IN VITRO

Metabolic Engineering of Potato Carotenoid Content

OPEN access Freely available online

PLos one

Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway

Gianfranco Diretto¹⁹, Salim Al-Babili²⁹, Raffaela Tavazza¹, Velia Papacchioli¹, Peter Beyer², Giovanni Giuliano^{1*}

1 Ente per le Nuove Tecnologie, l'Energia e l'Ambiente (ENEA), Casaccia Research Center, Roma, Italy, 2 Faculty of Biology, Universität Freiburg, Freiburg, Germany

Figure 3. Tuber and leaf phenotypes of transgenic lines. A.Tuber phenotypes. B.Leaf phenotypes, viewed in transmitted light. The difference in size of the middle leaf is not representative. doi:10.1371/journal.pone.0000350.g003

OUTLINE

UPDATING A STAPLE FOOD

Growing appetite

Potato production has grown in Asia, particularly in China and India, while falling in Europe.

Figure 1. Tetraploid potato in the United States has made little to no genetic gain for yield due to the complexity of the genome

(A) Yield data (in tonnes/hectare) from 23 major US cultivars released between the late 19th and 20th centuries grown in a common field in 1990–1992 in the Montcalm Research Farm, Entrican, Ml.¹ No significant increase in yield was observed through the \sim 100 years of breeding, with the highest yielding cultivar released before 1900.

Agha et al., Cell Genomics 2023

COMPLEX POTATO GENETICS

desirable traits like disease resistance and vield stability.

environmental stresses.

accumulation of deleterious mutations and limits genetic diversity.

UPDATING A STAPLE FOOD

Stokstad, Science 2019

REINVENTION OF POTATO

CellPress

Genome design of hybrid potato

Chunzhi Zhang,¹ Zhongmin Yang,¹ Dié Tang,¹ Yanhui Zhu,¹ Pei Wang,¹ Dawei Li,¹ Guangtao Zhu,² Xingyao Xiong,¹ Yi Shang,² Canhui Li,² and Sanwen Huang^{1,3,*}

¹Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China ²The AGISCAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China ³Lead contact

*Correspondence: huangsanwen@caas.cn

https://doi.org/10.1016/j.cell.2021.06.006

Cell Article

Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding

Yaoyao Wu,^{1,2,16} Dawei Li,^{1,3,16} Yong Hu,^{1,4,16} Hongbo Li,^{1,17} Guillaume P. Ramstein,^{5,17} Shaoqun Zhou,¹ Xinyan Zhang,¹ Zhigui Bao,^{1,6} Yu Zhang,^{1,7} Baoxing Song,⁸ Yao Zhou,^{1,9,10} Yongfeng Zhou,¹ Edeline Gagnon,¹¹ Tina Särkinen,¹² Sandra Knapp,¹³ Chunzhi Zhang,¹ Thomas Städler,¹⁴ Edward S. Buckler,^{2,15} and Sanwen Huang^{1,3,18,*} ¹State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China

FROM BREEDING TO GENOME DESIGN

80

60

40

20

0

Total yield of 90 plants (kg)

Tubers Fruits

H1

H1

A6-26

В

Е

H1

H3

H4 Zhang et al., Cell 2021

GENE EDITING REVOLUTION

GENE EDITING REVOLUTION

NBTs PRESERVE TRADITIONAL VARIETIES

Fast | Accurate | Identity remains unchanged

Insertion through genetic engineering of genes in their native form taken from the same species or from sexually compatible species.

CISGENESIS

Edit the DNA in a targeted manner at a specific position within the DNA. Mutations similar to those that would naturally occur spontaneously.

POTATO IMPROVEMENT CRISPR/Cas GENOME EDITING

Applications of CRISPR/Cas system-mediated genome editing in potato

Trait	Editing Tool	Name of target genes	Type of edit
Genetic breeding	CRISPR/Cas9	Sp3 and Sp4	Gene knockout
	CRISPR/Cas9	S-Rnase	Gene knockout
	CRISPR/Cas9	StD6PK and StSIEL	Gene knockout
	CRISPR/Cas9	Sli	Gene knockout
Stress resistance	CRISPR/Cas9	StDND1, StCHL1, and StDMR6-1	Gene knockout
	CRISPR/Cas9	StFLORE	Promoter mutation
	CRISPR/Cas9	StCCoAOMT	Gene knockout
	CRISPR/Cas9	tMYB44	Gene knockout
	CRISPR/Cas13a	LshCas13a	Gene knockout
Improved quality	CRISPR/Cas9	tGBSS	Gene knockout
	CRISPR/Cas9	StGBSSI	Gene knockout
	A3A-CBE	StGBSSI	Base editing
	CRISPR/Cas9	StGBSSI	Gene knockout
	CRISPR/Cas9	StGBSSI	Gene knockout
	PmCDA1-CBE	StGBSSI	Base editing
	CRISPR/Cas9	StGBSSI	Gene knockout
	CRISPR/Cas9	SBE1 and SBE2	Gene knockout
	CRISPR/Cas9	SBE1 and SBE2	Gene knockout
	CRISPR/Cas9	AtCGS and StMGL	Gene knockout
	CRISPR/Cas9	St16DOX	Gene knockout
	CRISPR/Cas9	StSSR2	Gene knockout
	CRISPR/Cas9	StPPO2	Gene knockout
Improved yield	CRISPR/Cas9	StIT1	Gene knockout

Creating the Next Generation Potato 19493 S6 527

Chonca a (25g) 01/2016